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This invention relates generally to neural network

architectures and more specifically to a neural network

hardware architecture in which a digital-analog hybrid synapse

integrated circuit chip is cascaded with a synapse-neuron

composite integrated circuit chip to achieve uniquely high

resolution synaptic weights.

FIG. 1 is a block diagram illustrating the building block

approach to neuroprocessors; FIG. 2 is a schematic illustration

of a multiplying digital-to'analog converter synapse chip cell

showing binary coded current sources; FIG. 3 is a graphical

illustration of the transfer characteristic of the cell of

FIG. 2; FIG. 4 is a schematic diagram of a cascade-

backpropagation neural networks in accordance with the present

invention; FIG. 5 is a schematic illustration of a piggyback

chip stacking architecture of the invention; FIG. 6 is a

photograph of the synapse-neuron integrated circuit chip of the

invention; FIG. 7 is a graphical illustration of the measured

transfer characteristics of a neuron showing the sigmoidal

nature of the curve and variable gain; FIG. 8 is a graphical

illustration of measured neuron characteristics compared with

theory and SPICE simulation results; FIG. 9 is a graphical

illustration of the characteristics of a synapse showing the

llnearity of behavior; and FIG. 10 is a schematic circuit

diagram of a wide range neuron.

The novelty of the invention resides in providing cascaded

and stackable neural network chips suitable for implementing

cascade backpropagation in hardware that is fully parallel and

reconfigurable. A fully-connected network with 64 neurons is

obtained by cascading two types of chips, namely, a pair of

synapse chips and a pair of neuron-synapse composite chips. A
resolution of about ii bits is obtained to enable hardware-in-

the-loop learning.
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I0 ORIGIN OF INVENTION

15

The invention described herein was made in the

performance of work under a NASA contract, and is

subject to the provisions of Public Law 96-517

(35 USC 202) in which the Contractor has elected not to

retain title.

TECHNICAL FIELD

20

25

This invention relates generally to neural network

architectures and more specifically to a neural network

hardware architecture in which a digital-analog hybrid

synapse integrated circuit chip is cascaded with a

synapse-neuron composite integrated circuit chip to

achieve uniquely high resolution synaptic weights.
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BACKGROUNDOF THE INVENTION

I0
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Neural network architectures typically consist of

massively parallel systems of simple computational

elements. While software-based implementations are

adequate for simulating these nonlinear dynamical

systems, the physical realization of the true

computational processing power inherent in such

architectures can only be unleashed with their hardware

implementation. This assumes that the electronic

implementation retains the fine grained massive

parallelism feature inherent in the model. There are a

multitude of hardware approaches currently being taken

for the implementation of neural network architectures,

and these include: analog approaches; biologically

motivated pulse-stream arithmetic approaches;

optoelectronic approaches; charge couple device

approaches; and digital approaches.

20
The application of neural networks to problems that

require adaptation (either from example or by self-

organization based on the statistics of applied inputs)

is among the most interesting uses of neural networks.

In either case, a critical issue for any hardware
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implementation, is the inclusion of either on-chip or

chip-ln-the-loop learning capabilities based on one or

more of the current learning paradigms. Real-time

adaptation constraints might even further focus the on-

chip learning requirements by specifying a need for the

adjustment of the synaptic weights in a fully parallel

and asynchronous fashion.

I0
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Of the numerous neuromorphic learning paradigms

currently available, the broad majority are aimed at

supervised learning applications. These range from

simple Hebbian models with learning rules that require

local connectivity information only, to complex

hierarchical structures such as the Adaptive Resonance

Theory (ART) model. Intermediate in complexity are

algorithms for gradient descent learning that are most

commonly applied to feedforward neural networks, and to

a lesser extent to fully recurrent networks. These

gradient descent algorithms are used to train networks

from examples. Whether used for implementing a

classification problem or a conformal mapping from one

multidimensional space into another, adaptation

involves selecting an appropriate set of input and

output training vectors. Common to any supervised

learning paradigm, training is achieved by applying an



input to the network and calculating the error between

the actual output and the desired target quantity.

This error is used to modify the network weights in

such a way that the actual output is driven toward the

target. What differentiates models are the actual

network topologies and the mathematical learning

formalisms.

i0
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LEARNING HARDWARE ISSUES

While numerous learning methods exist for software

based neural network simulators, the same is not true

for hardware. There are several reasons for this.

Most importantly, the majority of neural learning

algorithms are formulated for software implementations.

They are based on mathematical expressions and

formalisms which cannot be easily adapted to analog

hardware and furthermore, they implicitly assume that

the available synaptic dynamic r_ge is from 32 to 64

bits of precision. This is in contrast to analog

hardware, where 12 bits or more of resolution is

pushing the technology. For example, let us consider

the feedforward architecture with the backpropagation

gradient descent learning scheme for weight adaptation.

The calculation of the incremental weights requires not
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only knowledge of local synaptic weight values, but

also the computation of the derivative of the

activation function, and the knowledge of the network

connectivity information. For on-chlp hardware

learning, synaptic weights must be stored locally.

This can be achieved, for example, with a capacitor

where the synaptic weight is proportional to the charge

on a capacitor. The calculation of the derivative is

more complicated. One possible scheme for doing it is

to perturb the input signal to the neuron with a very

weak signal and calculate the ratio of the output to

input signal differences. This quantity would be

proportional to the derivative. As can be surmised,

the complexity of the electronics rapidly scales up.

There is, however, an additional problem of tremendous

importance that is not at all related to clever circuit

designs, but rather tests the limits of the analog

implementation medium. Because the incremental weight

updates in gradient descent-based learning are often

exceedingly small quantities, a large dynamic range is

required of the synaptic weights. Unpublished results

have suggested that up to 16 bits of quantization are

typically required for the successful hardware

implementation for the popular backpropagation learning

algorithm. This is considerably higher than the range



obtained from analog fully parallel implementations to

date. Learning with less synaptic weight precision

leads to oscillations and instability. Currently, ii

bits of resolution have been achieved with the synapse

chips implemented by the inventors herein.
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Due to the difficulties of implementing learning in

hardware, a number of methods have been developed that

use a host computer to perform portions of the learning

process. Firstly, it is possible to train the network

in simulation and then download the resulting weights

into a feedforward 'production' network. While this

method results in uncompensated errors as a result of

mismatches between the simulated and actual circuits,

it may only be useful for very small neural networks.

This is especially true if the simulation incorporates

a first order characterization of the hardware.

Secondly, hardware-in-the-loop learning is a method for

taking into account all time-independent errors in a

neural network. Learning is controlled by the host

computer, but the hardware is exercised as a part of

the learning cycle. The hardware is considered as a

'black box' with both input _d Output channels of

analog data, and of which only adjustable parameters

are the synaptic weights. In response to an input
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prompt vector, the output vector can be made to swing

to a specified value by suitable fine adjustment of the

internal weight parameters. The effect of weight

changes can then be measured experimentally a

posteriori, i.e., by applying an input and measuring

the output. The objective then is to seek incremental

weight changes that cause the output to approach the

target. Finally, both methods may be combined. An

initial weight set is calculated by simulation and can

be downloaded into the hardware. This is followed by

chip-in-the-loop learning to compensate for differences

between the simulation and the actual hardware. This

approach has been pursued to train the ETANN chip

(manufactured by Intel) to identify upper and lower

case characters and numerals in two different typefaces

and in two different font sizes.

20

25

Historically, the first hardware implementations of

neural systems using discrete component neurons and

synapses were the Adaline and Madaline disclosed by

Bernard Widrow. These systems utilized programmable

electrochemical weight elements in a variety of

applications including pattern recognition and broom

balancing. These network architectures were extremely

simple topologically and could contain as few as a



single neuron. They were capable of real-world

applications in adaptive filtering and adaptive signal

processlng.
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The first analog single chip learning machine was the

stochastic Boltzmann machine of Joshua Alspector et al.

This machine utilized 6 analog neurons, 15

bidirectional 5-bit multiplying digltal-to-analog

converter (MDAC) synapses, and variable amplitude noise

sources. The system incorporated digital counters and

analog noise to determine correlations between the two

neurons that the synapse connects, both when the

neurons were clamped during training and when allowed

to run freely during production. If the neuron states

were correlated during training but not during

production, the connecting synapse weight was

incremented; and if the opposite was true, the synapse

weight was decremented. The training circuitry was

essentially digital, with highly quantized weights. Up

to a few hundred training cycles were required for

correct classification. One of the difficulties with

this chip was that the analog noise sources became

correlated, confounding controlled annealing. In

recent work, a digital pseudorandom shift register with



9

multiple taps was used to obtain multiple noise sources

that were uncorrelated over short windows of time.

i0

To date, there have been a multitude of approaches to

the hardware implementation of neuromorphic

architecture. An objective leading to development of

the present invention has been to take an analog CMOS

'building block' modular approach capable of building

moderate-sized networks with up to a few hundred

neurons and several thousand synapses total and

implement chip-in-the-loop learning.

15

2O

The following U.S. patents and publications are

relevant to the present invention:

4,961,005

4,994,982

5,004,932

5,053,645

5,068,662

5,109,275

Sal am

Duranton et al

Nej ime

Har ad a

Guddanti et al

Naka et al

4,972,187

4,996,648

5,047,655

5,063,601

5,095,443

Wecker

Jourjine

Chambost et al

Hayduk

Watanabe

25

Publication entitled "Fuzzy/Neural Split-Chip

Personality", Electronic Engineering Times, April 2,

1990; and Publication entitled "A Neural Chips Survey"

AI Expert, December 1990.
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STAT_4ENT OF THE INVENTION
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The present invention comprises a variety of hardware

neural network building block chips fabricated with 2_

CMOS technology. The cascadable and stackable building

block chips are fully parallel and reconfigurable and

therefore offer high speed. Furthermore, the synaptic

memory is based on SRAM design and unlike capacitive

synapses does not require refresh circuitry overhead.

Disclosed herein are a synaptic array chip and a

neuron-synapse composite array chip which have been

successfully applied to solve a range of data

classification and optimization problems. These

problems often require higher resolution synapse and/or

larger network. The disclosed cascadable and stackable

chips are therefore quite well-suited for such

applications. Iterative learning techniques, such as

gradient descent, have been developed primarily for

fixed neural architectures. On the other hand, the

Cascade Correlation (CC) algorithm overcomes the

problem of specifying a priori the number of hidden

neurons. The present invention further modifies the CC

algorithm into a hardware implementable "Cascade

Backpropagation" and its embodiment has been applied to

solving real problems.
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There are two types of building block chips disclosed

herein: synapse chips and neuron-synapse chips. The

synapse chip contains a 32 x 32 crossbar array of

synapse cells in which each cell consists of these

three blocks: V-I convertor; 6-bit digital-to-analog

convertor; and a current steering circuit to provide

the sign bit.

i0

15

The neuron-synapse chip also has a 32 x 32 synapse

array in which one diagonal of synapses is replaced by

32 neurons having full connectivity. Each neuron,

through three circuit functions (comparator, I-V

convertor, and gain controller), performs a non linear

(sigmoidal) transformation on its input current and

produces a corresponding voltage as output.

20

A fully-connected network with 64 neurons is obtained

by cascading two synapse and two neuron-synapse chips.

Furthermore, by paralleling these four chips with four

additional synaptic chips (in effect paralleling each

synapse of one chip with a respective synapse on the

other) and setting chip gain levels accordingly, the

effective dynamic range of weights was increased to ii
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bits. In stacking two chips, one may be referred to as

a high order bit chip (HOB), and the other, a low order

bit chip (LOB). With the same input voltage applied to

both the LOB and HOB cells, the biases are adjusted

such that the LOB cell current is 64 times less than

the current input at the HOB cell. This would provide

a nominal synapse resolution of 14 bits, but the

transistor mismatches and processing variation restrict

the resolution to around ii bits. The ll-bit

resolution is a requirement for hardware-in-the-loop

learning using Cascade Backpropagation.

15
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By setting feedback weights to zero, a feedforward

architecture was mapped onto this system of eight

cascaded neurochips. A new resource-allocating

learning algorithm (Cascade Backpropagation) was used

that combines Back Propagation with elements of Cascade

Correlation. This new algorithm starts with a single

layer perceptron, where-in pseudo-lnverse calculated

weights are downloaded and are then frozen. Neurons

are added as hidden units one at a time to learn the

required input to output. The added neuron weights are

computed using a gradient-decent technique. A host

computer sends the input to the network and reads the

hidden unit and the output neuron outputs. Perturbing
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the bias weights to find the change of outputs

determines the derivatives of the hidden neuron and

output neuron transfer curve. With the input, hidden

and output neuron outputs, their derivatives, and the

differences of actual and target outputs determined,

the change of weights can now be calculated and

effected through the software. The iterative process

repeats until the learning saturates (no change in

output) or an iteration limit is reached. The weights

are then frozen and a new hidden unit is added to

continue the learning process. The learning process is

ended when the desired degree of tolerance between

target and actual output is reached.

15

2O

It is therefore a principal object of the present

invention to provide a hardware implemented, on-line

learning neuroprocessor having cascaded integrated

circuit chips to provide extremely high electronic

synaptic weight resolution, combined with a new

learning algorithm and a hardware design that offers

reconfigurability, cascadability and high resolution

for on-line learning.
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It is another object of the invention to provide a

high resolution neuroprocessor architecture in which a

fully connected synapse-neuron chip is cascaded with

synaptic chips to obtain larger size networks for on-

line learning.

i0

It is still an additional object of the invention to

provide a cascaded neuroprocessor system (both a

lateral cascading to obtain larger size networks and a

piggyback synaptic connectivity to obtain higher bit

resolutions) in which on-line learning is made possible

by the achievement of ii or 12 bit resolution in

electronic synaptic weights.

15 Many of the terms and general concepts described

herein may be better understood by referring to an

article entitled "How Neural Networks Learn From

Experience" by Geoffrey E. Hinton, Scientific American,

Volume 267, Number 3, September 1992, pages 145-151.
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BRIEF DESCRIPTION OF THE DRAWINGS

i0

The aforementioned objects and advantages of the

present invention, as well as additional objects and

advantages thereof, will be more fully understood

hereinafter as a result of a detailed description of a

preferred embodiment when taken in conjunction with the

following drawings in which:

FIG. 1 is a block diagram illustrating the building

block approach to neuroprocessors;

15

FIG. 2 is a schematic illustration of a multiplying

digital-to-analog converter synapse chip cell showing

binary coded current sources;

2O

FIG. 3 is a graphical illustration of the transfer

characteristic of the cell of FIG. 2;

FIG. 4 is a schematic diagram of a cascade-

backpropagation neural networks in accordance with the

present invention;
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FIG. 5 is a schematic illustration of a piggyback

chip stacking architecture of the invention;

5

FIG. 6 is a photograph of the synapse-neuron

integrated circuit chip of the invention;

I0

FIG. 7 is a graphical illustration of the measured

transfer characteristics of a neuron showing the

sigmoidal nature of the curve and variable gain;

FIG. 8 is a graphical illustration of measured neuron

characteristics compared with theory and SPICE

simulation results;

15 FIG. 9 is a graphical illustration of the

characteristics of a synapse showing the linearity of

behavior ; and

20

FIG. i0 is a schematic circuit diagram of a wide

range neuron.
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DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

I0

15

2O

BUILDING BLOCK HARDWARE MODULES

Analog hardware systems have reemerged as an

important class of computing devices. There are

several reasons for this. Perhaps the most exciting

reason is that one can fabricate large scale analog

VLSI circuits that are capable of implementing the

fully parallel architecture of neural networks, thereby

exploiting their inherently high speed processing

capabilities. A further advantage of analog technology

over digital technology is in the tremendous

simplification of circuitry associated with the

exploitation of the physics of the device and the

consequent savings in the VLSI real-estate. For

example, the neuronal function of aggregating the post-

synaptic excitatory/inhibitory outputs and summing them

prior to the application of the neuron's non-linearity

is achieved in the analog domain with a bare wire. The

same function can be achieved in the digital domain by

using large functional blocks such as registers and

accumulators and the corresponding software protocol.
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The general philosophy behind the present invention

has been to synthesize large scale analog neural

network systems from a library of VLSI 'building block'

chips. These chips should be capable of being

cascaded, so that it should be possible to directly

connect synapse inputs as well as outputs. This

implies that input values should be encoded as

voltages, because voltage replication can be performed

by one wire. The output values, however, must be

encoded as currents, since synapse outputs must be

summed and current summation can likewise be performed

by using just a bare wire. It should be noted that

this sum requires normalization and that the scaling

factor cannot be known in advance in the building block

paradigm. Consequently, it is necessary for the neuron

circuit to be capable of programmable gain variation.

Such chips can be cascaded to form networks of

arbitrary size and connectivity. By selectively

externally wiring chip outputs to corresponding chip

inputs, feedforward, feedback, or a combination of

neural network architectures can be carved out. This

concept for a general purpose neuroprocessor is shown

schematically in FIG. i.
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It is important to note that very few methods exist

for implementing analog memories in standard CMOSVLSI.

The most obvious is to store the values as digital

words, and use a digital-to-analog converter. The

drawback of this approach is that the synapse cell size

is too small to implement a hlgh-precision digital-to-

analog converter. One must be content with 5-7 bits of

resolution accuracy. A second approach is to store the

weights as charges on small on-chip capacitors and

serially refresh these analog charges by an external

download interface circuit. This interface circuit

stores the weights in digital form in a random access

memory (RAM) and invisibly refreshes the synapse. This

design offers about 10-bits of resolution and meets

most requirements. Its major drawback is the

associated extensive download/refresh circuitry. Both

of the above approaches are volatile in nature.

Another approach taken for a synapse chip, addresses

the volatility problem by storing charge in a

nonvolatile fashion on a transistor's floating gate

using ultraviolet (UV) radiation. This design

significantly reduces the complexity of the download

interface and offers long term nonvolatile storage of

weights. However, weight wrlting is a very slow

process and the bit resolution obtained is much lower

(5 to 6 bits).
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MULTIPLYING DIGITAL-TO-ANALOG CONVERTER SYNAPSE CHIP

i0
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The simplest method for implementing synapses in

hardware is based on a hybrid digital-analog design

which can be easily implemented in CMOS with a

straightforward digital interface and analog circuit.

The hybrid design utilizes digital memories to store

the synaptic weights and digital-to-analog converters

to perform the analog multiplication. This synapse

design is organized as a 32 x 32 cross-bar array of

synaptic cells and constructed through MOSIS using 2_

feature sizes. The basic design and operational

characteristics of the synapse chip are described as

follows. Although earlier versions of the MDAC cell

exist with less dynamic range, the synaptic cell

described in this implementation consists of a 7-bit

static latch and a 6-bit two-quadrant multiplying

digital-to-analog converter (MDAC) along with a current

steering to provide the sign bit.

A circuit schematic of the 7-bit DAC is shown in

FIG. 2. The MDAC consists of a current input circuit,

a set of binary weighed current sources with selecting

switches DO to D 5 , and a current steering circuit with

selecting switch D 6 (D6). in operation,
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the externally generated input current is mirrored at

each of the binary weighed current sources in the

synaptic cell. Although a slngle FET transistor could

have been used to convert the synapse input voltage

into a current, we have preferred to employ an external

resistor for this conversion. This results in a highly

desirable linearity in the synaptic transfer

characteristic.

i0
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For each synaptic cell in the MDAC array, the

expression for the current Iou T flowing out of the cell

as a function of the input current IIN (given a

specific state of the latch) is given as follows.

Recall that the current from each of the binary weighed

current sources, Ii, is given by the quantity:

Ii - 2i IIN(D i)

where (Di) gives the plate of the switch D i and is

either 1 or 0, i.e., either ON or OFF. The total

current from the 7-bit static latch is then given by

-- 5

I0u T - (D6:D6)_=OI 1

where D6 : _66 determines the excitatory or inhibitory

configuration of the synaptic cell, and is either 1 or

-i.
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Typical measured synapse response (I-V) curves for

these hybrid 32 x 32 x 7-bit chips are shown in FIG. 3

for 25 weight values evenly spread over the full weight

range of (+63) levels of quantization. The curves in

FIG. 3 were obtained using an external 10-megaOhm

resistor for the I-V conversion. For input voltages

greater than about twice the transistor's threshold

voltage (-0.8v), the synapse's current output iS a

highly linear function of the input voltage.

The synapse also exhibited excellent monotonicity and

step size consistency. Based on a random sampling of

synapses from several chips, the step size standard

deviation due to mismatched transistor characteristics

is typically less than 25%.

20

A variation of this MDACchip which was also

fabricated, incorporates 32 neurons physically and

electrically on the same chip. To achieve this, the

32 x 32 cross-bar synaptic matrix was modified to

physically locate the neurons along one of the

diagonals, and 32 x 31 synapses at the non-diagonal

nodes of the matrix.
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HARDWARE LEARNING SYSTEMS (FEEDFOI_ARD NE_ORKS)

DYNAMICALLY RECONFIGURABLE NEURAL NETWORKS

5

10

In selecting a neural network architecture, it has

been shown that careful thought must be given to

matching a network topology to the given problem. In

fixed-topology neural networks, the allocation of too

few neurons can lead to poor memorization, and the

allocation of too many neurons can lead to poor

generalization.

15

20

25

There exists a novel class of neural network

architectures that address this problem by permitting

the assignment of new computational elements, i.e.,

neurons and associated synapses to a given architecture

on the basis of the difficulty of learning a given

problem's complexity. In prior models, the network's

architecture was determined a priori on empirical or

heuristic grounds and consequently frozen prior to

training. Three such new architectures include the

Resource Allocating Neural Network (RANN) of John

Platt, the Cascade-Correlation Neural Network (CCNN) of

Scott Fahlman et al and the Cascade-Backpropagation

Neural Network (CBNN) of Tuan Duong a coinventor
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herein. All three architectures are characterized by

the dynamic assignment of neurons in a non-topology

static network with the specific goal of reducing the

network's training time. The speed-up in learning is a

consequence of the following three reasons. Firstly,,

all three architectures select a minimum network

topology prior to training that meets the posed

problem's input and output requirements. Secondly,

once training is initiated, new neurons are dynamically

inserted into the architecture based on performance

optimization. This means that the network will attempt

to learn the input-output transformation (via a

learning algorithm such as gradient descent) with its

initial network configuration and if necessary assign

new neurons to the architecture in order to minimize

the error below some minimum acceptable tolerance

requirement. Lastly, when presented with new external

stimuli, these networks can learn to provide the

desired response without the need for retraining the

entire network and consequently destroying past

learning. The techniques for achieving these desired

results vary from model to model.



25

5

i0

15

2O

In the 2-1ayer RANN architecture, Plait makes use of

Gaussian transfer functions for the neurons having

parameters, i.e., center, height and width, which are

locally tunable. These neurons have local response

functions, and depending on the Gaussian's full-width-

at-half-maximum, the neurons can be made to respond to

input values ranging from a delta neighborhood away

from the Gaussian's center all the way to all values.

It is because the neurons respond to only a small

region of the space of input Values, that newly

allocated neurons do not interfere with previously

allocated neurons. This network architecture is

currently being implemented in analog VLSI CMOS

hardware.

The CCNN and CBNN architectures differ from the RANN

architecture in that they make use of the standard

neuron transfer function with the sigmoid activation

response among other things. In both the CCNN and

CBNN, the learning algorithm initializes the network

with a minimalist architecture based solely on the

interface requirements to the external world, i.e., the

number of input and output units. At this stage, the

network topology does not contain any hidden units.
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The distinctions between the CCNNand CBNN models

come about in both the training methodologies used as

well as the subset of synapses that are subsequently

trained after each new neuron allocation. Both

algorithms assign hidden units one at a time to the

network topology. Each new hidden unit receives a

connection from each of the network's original inputs

and also from every pre-existing hidden unit. in the

case of the CCNN, the outputs from these new neurons

are not connected to the network's output neurons

initially. The training algorithm then relies on

adjusting the input weights to maximize the correlation

between the neuron's input and the residual network

error. When the correlation score reaches a plateau,

the hidden unit's input weights are frozen and the unit

is added to the network. The next stage is to retrain

all the weights going to the output units, including

those from the new hidden unit. Each new unit

therefore adds a new one-unit layer to the network.

This algorithm typically leads to multiple layers of

hidden units and consequently very deep architectures.
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In the CBNN, the network architecture also forms

multiple hidden layers. Like the CCNNalgorithm, the

CBNN learning algorithm assigns hidden units one at a

time to the network topology. The distinction between

the two models lies in training methodology of the

synaptic weight subset attached to the new allocated

neuron. A schematic of the CBNN is shown in FIG. 4.

Each new hidden unit receives a connection only from

each of the network's original inputs and also from

every pre-existing hidden unit. This hidden neuron

fans-out and makes connections with each of the

network's original outputs.

The learning algorithm for this problem is

particularly simple and readily amenable to hardware

implementations as compared to the CCNN. The network

starts with a minimum configuration neural network with

no hidden units. The input and output neurons are

connected through a single synaptic block. The

synaptic weights of this single layer network can be

calculated using a pseudo-inverse technique. These

synaptic weights are then fixed. A new neuron is

allocated to the network and small random weights are

assigned to the connecting synapses. The back-

propagation learning algorithm is applied to this
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single-neuron/single-hidden-layer problem. The weights

are adjusted at every input pattern presentation

according to the rule

where Wij is the synaptic connection strength between

node i and node j; the term xi is the output of the

neuron i; n is a gain term; and 6j is the error Signal.

The error term, given by

z )=E=
i

15

20

is monitored during training. If the error term falls

below the minimum acceptable value, training stops.

However, if the error reaches an asymptotic limit well

above the minimum acceptable value after a few hundred

training cycles, the synaptic weights linking this new

neuron to the remainder of the network are frozen for

the remainder of the training and a new neuron resource

is allocated, making connections to the original

network and to all other allocated hidden layers. By

allocating a sufficient number of new neurons, the CBNN

can eventually represent the targeted input to output

linear/nonlinear transformation.
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The feedforward network for supervised learning

implementing the CBNN architecture was constructed

using a 7-bit (6-bit + sign) 32 x 32 synaptic array

chip and a 32 x 31 composite synapse/neuron chip. For

hardware based learning, it has been shown that a

synaptic resolution greater than 10-bits is required.

This requirement was met by cascading the synapse chips

and composite neuron/synapse chips along the z

direction. This architecture is shown schematically in

FIG. 5. Chip B represents the synapse only chip, and

chip A is the hybrid neuron-synapse chip.

15

2O

25

Increasing the synaptic dynamic range was achieved in_

the following way. A suitable bias voltage for all

synaptic cells on chip B was determined and fixed. The

corresponding input current I i per synaptic cell was

measured. This ensures that the synaptic output

current variation be over the range -63 I i , +63 Ii •

The bias voltage for the synapses on chip A was

subsequently adjusted such that the corresponding input

current be Ij where Ij = 64 !i. Chip A having equally

7-bits of resolution, resuits in an output current

variation over the range -63 I. , +63 Ij . As the3

respective synapses of the two stacked chips provide a

current common to the output line, the synapse output
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is thus seen to vary over the range -4095 I i, +4095 I i

thereby providing a nominal 13-bit (12-bit + sign)

synapse. However, practical considerations such as

mismatch, reduce the effective resolution to about ii

bits.

i0

This neuroprocessor was successfully trained on the

standard benchmarks, namely the XOR and parity

problems. For example, the XOR transformation was

learned with the allocation of 3 hidden neurons on the

average.

15
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25

This new scheme for obtaining ii bits of synapse

resolution is achieved by cascading a 7-bit resolution

digital-analog hybrid synapse chip with a newly

developed composite synapse-neuron chip (FIG. 6)

consisting of a 32 x 31 matrix of electrically

programmable, non-volatile, fully connected, 7-bit

resolution, synaptic weights (FIG. 2), and thirty two,

diagonally placed, variable-gain neurons with sigmoidal

transfer characteristics (FIG. 7). The neuron

characteristics derived by circuit analysis and

obtained by SPICE simulation show a very good match

with those measured in hardware (FIG. 8). This fully

connected network, interfaced to a PC is configured
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in a feedforward architecture by nulling the feedback

and unused synapse transconductances. The hardware is

then used for learning the solution to the "exclusive

or" (XOR) problem with our new learning algorithm

called cascade back propagation (CBNN) that has useful

features of both BP and CC algorithms. The hardware

indeed learns the solution by presenting four training

examples (0,0; 0,1; 1,0; and i,i) to it and iteratively

adjusting the weights.

THE INVENTIVE CHIPS

15

2O

SYNAPSE DESIGN: Implemented with 2-_m feature size

CMOS VLSI process, each synapse in the two chips

contains a two-quadrant multiplying digital-to-analog

converter (DAC) based on a cascode current mirror

design that achieves high linearity of current in its

multiplying operation (FIG. 9). Externally addressable

multi-bit static latches are incorporated to program

the required weights into the synapse. Additionally, a

current steering circuit allows bipolar current output

(positive for excitation, negative for inhibition), and

hence a single current summing node,
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where an algebraic sum of synapse output currents is

likely to be much less than the sum of their absolute

magnitudes.

i0
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NEURONDESIGN: An operational amplifier implements the

required neuron transfer characteristics of sigmoidal

function from its input current to its output voltage.

The neuron circuit (FIG. 10) comprises three functional

blocks. The first block consists of a comparator

circuit that provides the thresholding sigmoidal

function and compares the input current to a reference.

The second block performs the current to voltage

conversion, whereas, the third block has a gain

controller to modify the amplifier gain, thereby

changing the sigmoidal slope. This feature is

important in neural networks for simulated annealing

function. The design offers four distinct regions in

neuron characteristics. Regions 1 and 4 are the flat

regions where the output nearly saturates for larger

magnitudes of the input currents for the positive and

negative values of the input current, respectively, and

the regions 2 and 3 are the linear parts of the curve,

again for +ve and -ve values of the input current. A

smooth transition into successive regions allows for a

monotonically increasing sigmoidal curve as input
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current to the neuron increases from a large -ve value

to a large +re value, and the output voltage is bounded

by the rail voltages.

CONCLUSIONS

10

15

2O

The building block approach to the construction of

fully parallel neural networks allows the

implementation of networks of various sizes and

architectures using only a small set of custom VLSI

chip designs. This had made it possible to rapidly

prototype application-specific neuroprocessors without

the need for extensive VLSI design and fabrication. A

critical issue however is the ease of implementing on-

line learning with chip-in-the-loop approaches. In our

approaches, we have been able to configure hardware to

provide ii bits of dynamic range or better.

Consequently, it has become possible for the first time

to implement analog neural networks with the capability

for supervised learning.

Having thus described a preferred embodiment of our

invention, what is claimed is-
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High-speed, analog, fully-parallel and asynchronous

building blocks are cascaded for larger sizes and

enhanced resolution. A hardware compatible algorithm

permits hardware-in-the-loop learning despite limited

weight resolution. A computation intensive feature

classification application has been demonstrated with

this flexible hardware and new algorithm at high speed.

This result indicates that these building block chips

can be embedded as application-specific-coprocessors

for solving real world problems at extremely high data

rates.
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